Bestimme $$$\sqrt{32 + 4 \sqrt{17} i}$$$

Dieser Rechner findet alle $$$n$$$-ten Wurzeln ($$$n = 2$$$) der komplexen Zahl $$$32 + 4 \sqrt{17} i$$$, mit Lösungsschritten.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\sqrt{32 + 4 \sqrt{17} i}$$$.

Lösung

Die Polarform von $$$32 + 4 \sqrt{17} i$$$ lautet $$$36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right)$$$ (für die Schritte siehe Polarform-Rechner).

Nach der Formel von de Moivre sind alle $$$n$$$-ten Wurzeln der komplexen Zahl $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ durch $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ gegeben.

Es gilt, dass $$$r = 36$$$, $$$\theta = \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}$$$ und $$$n = 2$$$.

  • $$$k = 0$$$: $$$\sqrt{36} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 0}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 0}{2} \right)}\right) = 6 \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\right) = 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}$$$
  • $$$k = 1$$$: $$$\sqrt{36} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 1}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 1}{2} \right)}\right) = 6 \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} + \pi \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} + \pi \right)}\right) = - 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} - 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}$$$

Antwort

$$$\sqrt{32 + 4 \sqrt{17} i} = 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\approx 5.8309518948453 + 1.414213562373095 i$$$A

$$$\sqrt{32 + 4 \sqrt{17} i} = - 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} - 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\approx -5.8309518948453 - 1.414213562373095 i$$$A


Please try a new game Rotatly