Integral of $$$t$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int t\, dt$$$.
Solution
Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$${\color{red}{\int{t d t}}}={\color{red}{\frac{t^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Therefore,
$$\int{t d t} = \frac{t^{2}}{2}$$
Add the constant of integration:
$$\int{t d t} = \frac{t^{2}}{2}+C$$
Answer
$$$\int t\, dt = \frac{t^{2}}{2} + C$$$A
Please try a new game Rotatly