Integral of $$$e^{t^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{t^{2}}\, dt$$$.
Solution
This integral (Imaginary Error Function) does not have a closed form:
$${\color{red}{\int{e^{t^{2}} d t}}} = {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}\right)}}$$
Therefore,
$$\int{e^{t^{2}} d t} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}$$
Add the constant of integration:
$$\int{e^{t^{2}} d t} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}+C$$
Answer
$$$\int e^{t^{2}}\, dt = \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2} + C$$$A
Please try a new game Rotatly