Integral of $$$x^{2} \left(x^{3} - 5\right)^{7}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{2} \left(x^{3} - 5\right)^{7}\, dx$$$.
Solution
Let $$$u=x^{3} - 5$$$.
Then $$$du=\left(x^{3} - 5\right)^{\prime }dx = 3 x^{2} dx$$$ (steps can be seen »), and we have that $$$x^{2} dx = \frac{du}{3}$$$.
The integral can be rewritten as
$${\color{red}{\int{x^{2} \left(x^{3} - 5\right)^{7} d x}}} = {\color{red}{\int{\frac{u^{7}}{3} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = u^{7}$$$:
$${\color{red}{\int{\frac{u^{7}}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{7} d u}}{3}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=7$$$:
$$\frac{{\color{red}{\int{u^{7} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 7}}{1 + 7}}}}{3}=\frac{{\color{red}{\left(\frac{u^{8}}{8}\right)}}}{3}$$
Recall that $$$u=x^{3} - 5$$$:
$$\frac{{\color{red}{u}}^{8}}{24} = \frac{{\color{red}{\left(x^{3} - 5\right)}}^{8}}{24}$$
Therefore,
$$\int{x^{2} \left(x^{3} - 5\right)^{7} d x} = \frac{\left(x^{3} - 5\right)^{8}}{24}$$
Add the constant of integration:
$$\int{x^{2} \left(x^{3} - 5\right)^{7} d x} = \frac{\left(x^{3} - 5\right)^{8}}{24}+C$$
Answer
$$$\int x^{2} \left(x^{3} - 5\right)^{7}\, dx = \frac{\left(x^{3} - 5\right)^{8}}{24} + C$$$A