Integral of $$$\sin{\left(y \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(y \right)}\, dy$$$.
Solution
The integral of the sine is $$$\int{\sin{\left(y \right)} d y} = - \cos{\left(y \right)}$$$:
$${\color{red}{\int{\sin{\left(y \right)} d y}}} = {\color{red}{\left(- \cos{\left(y \right)}\right)}}$$
Therefore,
$$\int{\sin{\left(y \right)} d y} = - \cos{\left(y \right)}$$
Add the constant of integration:
$$\int{\sin{\left(y \right)} d y} = - \cos{\left(y \right)}+C$$
Answer
$$$\int \sin{\left(y \right)}\, dy = - \cos{\left(y \right)} + C$$$A
Please try a new game Rotatly