Integral of $$$\frac{e^{- x}}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{- x}}{x}\, dx$$$.
Solution
Let $$$u=- x$$$.
Then $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
So,
$${\color{red}{\int{\frac{e^{- x}}{x} d x}}} = {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$
This integral (Exponential Integral) does not have a closed form:
$${\color{red}{\int{\frac{e^{u}}{u} d u}}} = {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Recall that $$$u=- x$$$:
$$\operatorname{Ei}{\left({\color{red}{u}} \right)} = \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$
Therefore,
$$\int{\frac{e^{- x}}{x} d x} = \operatorname{Ei}{\left(- x \right)}$$
Add the constant of integration:
$$\int{\frac{e^{- x}}{x} d x} = \operatorname{Ei}{\left(- x \right)}+C$$
Answer
$$$\int \frac{e^{- x}}{x}\, dx = \operatorname{Ei}{\left(- x \right)} + C$$$A