Integral of $$$e^{2 x^{2}}$$$

The calculator will find the integral/antiderivative of $$$e^{2 x^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int e^{2 x^{2}}\, dx$$$.

Solution

Let $$$u=\sqrt{2} x$$$.

Then $$$du=\left(\sqrt{2} x\right)^{\prime }dx = \sqrt{2} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{\sqrt{2} du}{2}$$$.

The integral can be rewritten as

$${\color{red}{\int{e^{2 x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{2} e^{u^{2}}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{\sqrt{2}}{2}$$$ and $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{\frac{\sqrt{2} e^{u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{u^{2}} d u}}{2}\right)}}$$

This integral (Imaginary Error Function) does not have a closed form:

$$\frac{\sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{2}$$

Recall that $$$u=\sqrt{2} x$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\sqrt{2} x}} \right)}}{4}$$

Therefore,

$$\int{e^{2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{2} x \right)}}{4}$$

Add the constant of integration:

$$\int{e^{2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{2} x \right)}}{4}+C$$

Answer

$$$\int e^{2 x^{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{2} x \right)}}{4} + C$$$A


Please try a new game Rotatly