Integral of $$$e^{2 x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{2 x^{2}}\, dx$$$.
Solution
Let $$$u=\sqrt{2} x$$$.
Then $$$du=\left(\sqrt{2} x\right)^{\prime }dx = \sqrt{2} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{\sqrt{2} du}{2}$$$.
The integral can be rewritten as
$${\color{red}{\int{e^{2 x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{2} e^{u^{2}}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{\sqrt{2}}{2}$$$ and $$$f{\left(u \right)} = e^{u^{2}}$$$:
$${\color{red}{\int{\frac{\sqrt{2} e^{u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{u^{2}} d u}}{2}\right)}}$$
This integral (Imaginary Error Function) does not have a closed form:
$$\frac{\sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{2}$$
Recall that $$$u=\sqrt{2} x$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\sqrt{2} x}} \right)}}{4}$$
Therefore,
$$\int{e^{2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{2} x \right)}}{4}$$
Add the constant of integration:
$$\int{e^{2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{2} x \right)}}{4}+C$$
Answer
$$$\int e^{2 x^{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{2} x \right)}}{4} + C$$$A