Integral of $$$6 e^{3 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 6 e^{3 x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=6$$$ and $$$f{\left(x \right)} = e^{3 x}$$$:
$${\color{red}{\int{6 e^{3 x} d x}}} = {\color{red}{\left(6 \int{e^{3 x} d x}\right)}}$$
Let $$$u=3 x$$$.
Then $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{3}$$$.
Therefore,
$$6 {\color{red}{\int{e^{3 x} d x}}} = 6 {\color{red}{\int{\frac{e^{u}}{3} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$6 {\color{red}{\int{\frac{e^{u}}{3} d u}}} = 6 {\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$
Recall that $$$u=3 x$$$:
$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{\left(3 x\right)}}}$$
Therefore,
$$\int{6 e^{3 x} d x} = 2 e^{3 x}$$
Add the constant of integration:
$$\int{6 e^{3 x} d x} = 2 e^{3 x}+C$$
Answer
$$$\int 6 e^{3 x}\, dx = 2 e^{3 x} + C$$$A