Integral of $$$6^{- 3 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 6^{- 3 x}\, dx$$$.
Solution
The input is rewritten: $$$\int{6^{- 3 x} d x}=\int{216^{- x} d x}$$$.
Let $$$u=- x$$$.
Then $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
Therefore,
$${\color{red}{\int{216^{- x} d x}}} = {\color{red}{\int{\left(- 216^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = 216^{u}$$$:
$${\color{red}{\int{\left(- 216^{u}\right)d u}}} = {\color{red}{\left(- \int{216^{u} d u}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=216$$$:
$$- {\color{red}{\int{216^{u} d u}}} = - {\color{red}{\frac{216^{u}}{\ln{\left(216 \right)}}}}$$
Recall that $$$u=- x$$$:
$$- \frac{216^{{\color{red}{u}}}}{\ln{\left(216 \right)}} = - \frac{216^{{\color{red}{\left(- x\right)}}}}{\ln{\left(216 \right)}}$$
Therefore,
$$\int{216^{- x} d x} = - \frac{216^{- x}}{\ln{\left(216 \right)}}$$
Simplify:
$$\int{216^{- x} d x} = - \frac{216^{- x}}{3 \ln{\left(6 \right)}}$$
Add the constant of integration:
$$\int{216^{- x} d x} = - \frac{216^{- x}}{3 \ln{\left(6 \right)}}+C$$
Answer
$$$\int 6^{- 3 x}\, dx = - \frac{216^{- x}}{3 \ln\left(6\right)} + C$$$A