Integral of $$$2 x^{e}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 x^{e}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = x^{e}$$$:
$${\color{red}{\int{2 x^{e} d x}}} = {\color{red}{\left(2 \int{x^{e} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=e$$$:
$$2 {\color{red}{\int{x^{e} d x}}}=2 {\color{red}{\frac{x^{1 + e}}{1 + e}}}=2 {\color{red}{\frac{x^{1 + e}}{1 + e}}}$$
Therefore,
$$\int{2 x^{e} d x} = \frac{2 x^{1 + e}}{1 + e}$$
Add the constant of integration:
$$\int{2 x^{e} d x} = \frac{2 x^{1 + e}}{1 + e}+C$$
Answer
$$$\int 2 x^{e}\, dx = \frac{2 x^{1 + e}}{1 + e} + C$$$A