Integral of $$$4 x^{11} z^{6}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 4 x^{11} z^{6}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4 z^{6}$$$ and $$$f{\left(x \right)} = x^{11}$$$:
$${\color{red}{\int{4 x^{11} z^{6} d x}}} = {\color{red}{\left(4 z^{6} \int{x^{11} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=11$$$:
$$4 z^{6} {\color{red}{\int{x^{11} d x}}}=4 z^{6} {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=4 z^{6} {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$
Therefore,
$$\int{4 x^{11} z^{6} d x} = \frac{x^{12} z^{6}}{3}$$
Add the constant of integration:
$$\int{4 x^{11} z^{6} d x} = \frac{x^{12} z^{6}}{3}+C$$
Answer
$$$\int 4 x^{11} z^{6}\, dx = \frac{x^{12} z^{6}}{3} + C$$$A