Integraal van $$$4 x^{11} z^{6}$$$ met betrekking tot $$$x$$$

De rekenmachine zal de integraal/primitieve van $$$4 x^{11} z^{6}$$$ met betrekking tot $$$x$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int 4 x^{11} z^{6}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4 z^{6}$$$ en $$$f{\left(x \right)} = x^{11}$$$:

$${\color{red}{\int{4 x^{11} z^{6} d x}}} = {\color{red}{\left(4 z^{6} \int{x^{11} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=11$$$:

$$4 z^{6} {\color{red}{\int{x^{11} d x}}}=4 z^{6} {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=4 z^{6} {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$

Dus,

$$\int{4 x^{11} z^{6} d x} = \frac{x^{12} z^{6}}{3}$$

Voeg de integratieconstante toe:

$$\int{4 x^{11} z^{6} d x} = \frac{x^{12} z^{6}}{3}+C$$

Antwoord

$$$\int 4 x^{11} z^{6}\, dx = \frac{x^{12} z^{6}}{3} + C$$$A


Please try a new game Rotatly