Integral of $$$\frac{1}{z^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{z^{2}}\, dz$$$.
Solution
Apply the power rule $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{z^{2}} d z}}}={\color{red}{\int{z^{-2} d z}}}={\color{red}{\frac{z^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- z^{-1}\right)}}={\color{red}{\left(- \frac{1}{z}\right)}}$$
Therefore,
$$\int{\frac{1}{z^{2}} d z} = - \frac{1}{z}$$
Add the constant of integration:
$$\int{\frac{1}{z^{2}} d z} = - \frac{1}{z}+C$$
Answer
$$$\int \frac{1}{z^{2}}\, dz = - \frac{1}{z} + C$$$A
Please try a new game Rotatly