Integral of $$$\frac{1}{s^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{s^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{s^{2}}\, ds$$$.

Solution

Apply the power rule $$$\int s^{n}\, ds = \frac{s^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$${\color{red}{\int{\frac{1}{s^{2}} d s}}}={\color{red}{\int{s^{-2} d s}}}={\color{red}{\frac{s^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- s^{-1}\right)}}={\color{red}{\left(- \frac{1}{s}\right)}}$$

Therefore,

$$\int{\frac{1}{s^{2}} d s} = - \frac{1}{s}$$

Add the constant of integration:

$$\int{\frac{1}{s^{2}} d s} = - \frac{1}{s}+C$$

Answer

$$$\int \frac{1}{s^{2}}\, ds = - \frac{1}{s} + C$$$A


Please try a new game Rotatly