Integral of $$$\frac{1}{t^{\frac{3}{4}}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{t^{\frac{3}{4}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{t^{\frac{3}{4}}}\, dt$$$.

Solution

Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{3}{4}$$$:

$${\color{red}{\int{\frac{1}{t^{\frac{3}{4}}} d t}}}={\color{red}{\int{t^{- \frac{3}{4}} d t}}}={\color{red}{\frac{t^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1}}}={\color{red}{\left(4 t^{\frac{1}{4}}\right)}}={\color{red}{\left(4 \sqrt[4]{t}\right)}}$$

Therefore,

$$\int{\frac{1}{t^{\frac{3}{4}}} d t} = 4 \sqrt[4]{t}$$

Add the constant of integration:

$$\int{\frac{1}{t^{\frac{3}{4}}} d t} = 4 \sqrt[4]{t}+C$$

Answer

$$$\int \frac{1}{t^{\frac{3}{4}}}\, dt = 4 \sqrt[4]{t} + C$$$A


Please try a new game Rotatly