Integrale di $$$\frac{1}{t^{\frac{3}{4}}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{t^{\frac{3}{4}}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{t^{\frac{3}{4}}}\, dt$$$.

Soluzione

Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- \frac{3}{4}$$$:

$${\color{red}{\int{\frac{1}{t^{\frac{3}{4}}} d t}}}={\color{red}{\int{t^{- \frac{3}{4}} d t}}}={\color{red}{\frac{t^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1}}}={\color{red}{\left(4 t^{\frac{1}{4}}\right)}}={\color{red}{\left(4 \sqrt[4]{t}\right)}}$$

Pertanto,

$$\int{\frac{1}{t^{\frac{3}{4}}} d t} = 4 \sqrt[4]{t}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{t^{\frac{3}{4}}} d t} = 4 \sqrt[4]{t}+C$$

Risposta

$$$\int \frac{1}{t^{\frac{3}{4}}}\, dt = 4 \sqrt[4]{t} + C$$$A


Please try a new game Rotatly