Integraal van $$$\frac{1}{t^{\frac{3}{4}}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{t^{\frac{3}{4}}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{t^{\frac{3}{4}}}\, dt$$$.

Oplossing

Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=- \frac{3}{4}$$$:

$${\color{red}{\int{\frac{1}{t^{\frac{3}{4}}} d t}}}={\color{red}{\int{t^{- \frac{3}{4}} d t}}}={\color{red}{\frac{t^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1}}}={\color{red}{\left(4 t^{\frac{1}{4}}\right)}}={\color{red}{\left(4 \sqrt[4]{t}\right)}}$$

Dus,

$$\int{\frac{1}{t^{\frac{3}{4}}} d t} = 4 \sqrt[4]{t}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{t^{\frac{3}{4}}} d t} = 4 \sqrt[4]{t}+C$$

Antwoord

$$$\int \frac{1}{t^{\frac{3}{4}}}\, dt = 4 \sqrt[4]{t} + C$$$A


Please try a new game Rotatly