Integral of $$$d x e^{x}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int d x e^{x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=d$$$ and $$$f{\left(x \right)} = x e^{x}$$$:
$${\color{red}{\int{d x e^{x} d x}}} = {\color{red}{d \int{x e^{x} d x}}}$$
For the integral $$$\int{x e^{x} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{x} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).
So,
$$d {\color{red}{\int{x e^{x} d x}}}=d {\color{red}{\left(x \cdot e^{x}-\int{e^{x} \cdot 1 d x}\right)}}=d {\color{red}{\left(x e^{x} - \int{e^{x} d x}\right)}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$d \left(x e^{x} - {\color{red}{\int{e^{x} d x}}}\right) = d \left(x e^{x} - {\color{red}{e^{x}}}\right)$$
Therefore,
$$\int{d x e^{x} d x} = d \left(x e^{x} - e^{x}\right)$$
Simplify:
$$\int{d x e^{x} d x} = d \left(x - 1\right) e^{x}$$
Add the constant of integration:
$$\int{d x e^{x} d x} = d \left(x - 1\right) e^{x}+C$$
Answer
$$$\int d x e^{x}\, dx = d \left(x - 1\right) e^{x} + C$$$A