Integral of $$$d x e^{x}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$d x e^{x}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int d x e^{x}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=d$$$ and $$$f{\left(x \right)} = x e^{x}$$$:

$${\color{red}{\int{d x e^{x} d x}}} = {\color{red}{d \int{x e^{x} d x}}}$$

For the integral $$$\int{x e^{x} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{x} dx$$$.

Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).

So,

$$d {\color{red}{\int{x e^{x} d x}}}=d {\color{red}{\left(x \cdot e^{x}-\int{e^{x} \cdot 1 d x}\right)}}=d {\color{red}{\left(x e^{x} - \int{e^{x} d x}\right)}}$$

The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:

$$d \left(x e^{x} - {\color{red}{\int{e^{x} d x}}}\right) = d \left(x e^{x} - {\color{red}{e^{x}}}\right)$$

Therefore,

$$\int{d x e^{x} d x} = d \left(x e^{x} - e^{x}\right)$$

Simplify:

$$\int{d x e^{x} d x} = d \left(x - 1\right) e^{x}$$

Add the constant of integration:

$$\int{d x e^{x} d x} = d \left(x - 1\right) e^{x}+C$$

Answer

$$$\int d x e^{x}\, dx = d \left(x - 1\right) e^{x} + C$$$A


Please try a new game Rotatly