Integral of $$$\frac{7 d x^{3}}{f} - 13 x^{2} - 6$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{7 d x^{3}}{f} - 13 x^{2} - 6$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)d x}}} = {\color{red}{\left(- \int{6 d x} - \int{13 x^{2} d x} + \int{\frac{7 d x^{3}}{f} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=6$$$:

$$- \int{13 x^{2} d x} + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\int{6 d x}}} = - \int{13 x^{2} d x} + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\left(6 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=13$$$ and $$$f{\left(x \right)} = x^{2}$$$:

$$- 6 x + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\int{13 x^{2} d x}}} = - 6 x + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\left(13 \int{x^{2} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$- 6 x + \int{\frac{7 d x^{3}}{f} d x} - 13 {\color{red}{\int{x^{2} d x}}}=- 6 x + \int{\frac{7 d x^{3}}{f} d x} - 13 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 6 x + \int{\frac{7 d x^{3}}{f} d x} - 13 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{7 d}{f}$$$ and $$$f{\left(x \right)} = x^{3}$$$:

$$- \frac{13 x^{3}}{3} - 6 x + {\color{red}{\int{\frac{7 d x^{3}}{f} d x}}} = - \frac{13 x^{3}}{3} - 6 x + {\color{red}{\left(\frac{7 d \int{x^{3} d x}}{f}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$\frac{7 d {\color{red}{\int{x^{3} d x}}}}{f} - \frac{13 x^{3}}{3} - 6 x=\frac{7 d {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}}{f} - \frac{13 x^{3}}{3} - 6 x=\frac{7 d {\color{red}{\left(\frac{x^{4}}{4}\right)}}}{f} - \frac{13 x^{3}}{3} - 6 x$$

Therefore,

$$\int{\left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)d x} = \frac{7 d x^{4}}{4 f} - \frac{13 x^{3}}{3} - 6 x$$

Add the constant of integration:

$$\int{\left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)d x} = \frac{7 d x^{4}}{4 f} - \frac{13 x^{3}}{3} - 6 x+C$$

Answer

$$$\int \left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)\, dx = \left(\frac{7 d x^{4}}{4 f} - \frac{13 x^{3}}{3} - 6 x\right) + C$$$A


Please try a new game Rotatly