$$$x$$$ değişkenine göre $$$\frac{7 d x^{3}}{f} - 13 x^{2} - 6$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{7 d x^{3}}{f} - 13 x^{2} - 6$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)d x}}} = {\color{red}{\left(- \int{6 d x} - \int{13 x^{2} d x} + \int{\frac{7 d x^{3}}{f} d x}\right)}}$$

$$$c=6$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$- \int{13 x^{2} d x} + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\int{6 d x}}} = - \int{13 x^{2} d x} + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\left(6 x\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=13$$$ ve $$$f{\left(x \right)} = x^{2}$$$ ile uygula:

$$- 6 x + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\int{13 x^{2} d x}}} = - 6 x + \int{\frac{7 d x^{3}}{f} d x} - {\color{red}{\left(13 \int{x^{2} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$- 6 x + \int{\frac{7 d x^{3}}{f} d x} - 13 {\color{red}{\int{x^{2} d x}}}=- 6 x + \int{\frac{7 d x^{3}}{f} d x} - 13 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 6 x + \int{\frac{7 d x^{3}}{f} d x} - 13 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{7 d}{f}$$$ ve $$$f{\left(x \right)} = x^{3}$$$ ile uygula:

$$- \frac{13 x^{3}}{3} - 6 x + {\color{red}{\int{\frac{7 d x^{3}}{f} d x}}} = - \frac{13 x^{3}}{3} - 6 x + {\color{red}{\left(\frac{7 d \int{x^{3} d x}}{f}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=3$$$ ile uygulayın:

$$\frac{7 d {\color{red}{\int{x^{3} d x}}}}{f} - \frac{13 x^{3}}{3} - 6 x=\frac{7 d {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}}{f} - \frac{13 x^{3}}{3} - 6 x=\frac{7 d {\color{red}{\left(\frac{x^{4}}{4}\right)}}}{f} - \frac{13 x^{3}}{3} - 6 x$$

Dolayısıyla,

$$\int{\left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)d x} = \frac{7 d x^{4}}{4 f} - \frac{13 x^{3}}{3} - 6 x$$

İntegrasyon sabitini ekleyin:

$$\int{\left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)d x} = \frac{7 d x^{4}}{4 f} - \frac{13 x^{3}}{3} - 6 x+C$$

Cevap

$$$\int \left(\frac{7 d x^{3}}{f} - 13 x^{2} - 6\right)\, dx = \left(\frac{7 d x^{4}}{4 f} - \frac{13 x^{3}}{3} - 6 x\right) + C$$$A


Please try a new game Rotatly