Second derivative of $$$x^{3}$$$
Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator
Your Input
Find $$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right)$$$.
Solution
Find the first derivative $$$\frac{d}{dx} \left(x^{3}\right)$$$
Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 3$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = {\color{red}\left(3 x^{2}\right)}$$Thus, $$$\frac{d}{dx} \left(x^{3}\right) = 3 x^{2}$$$.
Next, $$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = \frac{d}{dx} \left(3 x^{2}\right)$$$
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 3$$$ and $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(3 x^{2}\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(x^{2}\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 2$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 3 {\color{red}\left(2 x\right)}$$Thus, $$$\frac{d}{dx} \left(3 x^{2}\right) = 6 x$$$.
Therefore, $$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = 6 x$$$.
Answer
$$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = 6 x$$$A