Derivative of $$$\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$
Related calculator: Derivative Calculator
Your Input
Find $$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Solution
Let $$$H{\left(x \right)} = \frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$.
Take the logarithm of both sides: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Rewrite the RHS using the properties of logarithms: $$$\ln\left(H{\left(x \right)}\right) = 6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)$$$.
Differentiate separately both sides of the equation: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)$$$.
Differentiate the LHS of the equation.
The function $$$\ln\left(H{\left(x \right)}\right)$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Return to the old variable:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Thus, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Differentiate the RHS of the equation.
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)}$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 6$$$ and $$$f{\left(x \right)} = \ln\left(x + 1\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)\right)} - \frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right) = {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)} - \frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 6$$$ and $$$f{\left(x \right)} = \ln\left(x^{2} + 8\right)$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)} + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) = - {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)$$The function $$$\ln\left(x^{2} + 8\right)$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(x \right)} = x^{2} + 8$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{2} + 8\right)\right)} + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)$$The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$- 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{2} + 8\right) + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{2} + 8\right) + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)$$Return to the old variable:
$$6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(u\right)}} = 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(x^{2} + 8\right)}}$$The derivative of a sum/difference is the sum/difference of derivatives:
$$6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2} + 8\right)\right)}}{x^{2} + 8} = 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(8\right)\right)}}{x^{2} + 8}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 2$$$:
$$6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(8\right)\right)}{x^{2} + 8} = 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(2 x\right)} + \frac{d}{dx} \left(8\right)\right)}{x^{2} + 8}$$The derivative of a constant is $$$0$$$:
$$- \frac{6 \left(2 x + {\color{red}\left(\frac{d}{dx} \left(8\right)\right)}\right)}{x^{2} + 8} + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right) = - \frac{6 \left(2 x + {\color{red}\left(0\right)}\right)}{x^{2} + 8} + 6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)$$The function $$$\ln\left(x + 1\right)$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(x \right)} = x + 1$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x + 1\right)\right)}$$The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x + 1\right) = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x + 1\right)$$Return to the old variable:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(u\right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(x + 1\right)}}$$The derivative of a sum/difference is the sum/difference of derivatives:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x + 1\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(1\right)\right)}}{x + 1}$$The derivative of a constant is $$$0$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(1\right)}}{x + 1}$$Thus, $$$\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right) = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Hence, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Therefore, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}\right) H{\left(x \right)} = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}.$$$
Answer
$$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right) = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}$$$A