Derivada de $$$\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$
Calculadora relacionada: Calculadora de Derivadas
Sua entrada
Encontre $$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Solução
Seja $$$H{\left(x \right)} = \frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$.
Tome o logaritmo de ambos os lados: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$
Reescreva o lado direito da igualdade usando as propriedades dos logaritmos: $$$\ln\left(H{\left(x \right)}\right) = 6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)$$$.
Derive separadamente os dois lados da equação: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)$$$.
Diferencie o membro esquerdo da equação.
A função $$$\ln\left(H{\left(x \right)}\right)$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$A derivada do logaritmo natural é $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Retorne à variável original:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Logo, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Derive o membro direito da equação.
A derivada de uma soma/diferença é a soma/diferença das derivadas:
$${\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)}$$Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = 6$$$ e $$$f{\left(x \right)} = \ln\left(x^{2} + 8\right)$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$A função $$$\ln\left(x^{2} + 8\right)$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = x^{2} + 8$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{2} + 8\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$A derivada do logaritmo natural é $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$- 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{2} + 8\right) + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{2} + 8\right) + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$Retorne à variável original:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(x^{2} + 8\right)}}$$A derivada de uma soma/diferença é a soma/diferença das derivadas:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2} + 8\right)\right)}}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(8\right)\right)}}{x^{2} + 8}$$A derivada de uma constante é $$$0$$$:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(8\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{x^{2} + 8}$$Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 2$$$:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(2 x\right)}}{x^{2} + 8}$$Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = 6$$$ e $$$f{\left(x \right)} = \ln\left(x + 1\right)$$$:
$$- \frac{12 x}{x^{2} + 8} + {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)}$$A função $$$\ln\left(x + 1\right)$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = x + 1$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x + 1\right)\right)}$$A derivada do logaritmo natural é $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x + 1\right) = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x + 1\right)$$Retorne à variável original:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(u\right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(x + 1\right)}}$$A derivada de uma soma/diferença é a soma/diferença das derivadas:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x + 1\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(1\right)\right)}}{x + 1}$$A derivada de uma constante é $$$0$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1}$$Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, em outras palavras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(1\right)}}{x + 1}$$Logo, $$$\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right) = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Logo, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Portanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}\right) H{\left(x \right)} = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}.$$$
Resposta
$$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right) = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}$$$A