Dérivée de $$$\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$
Calculatrice associée: Calculatrice de dérivées
Votre saisie
Déterminez $$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Solution
Soit $$$H{\left(x \right)} = \frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$.
Prenez le logarithme des deux membres : $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Réécrivez le second membre en utilisant les propriétés des logarithmes : $$$\ln\left(H{\left(x \right)}\right) = 6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)$$$
Dérivez séparément les deux membres de l’équation : $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)$$$.
Dérivez le membre gauche de l’équation.
La fonction $$$\ln\left(H{\left(x \right)}\right)$$$ est la composée $$$f{\left(g{\left(x \right)} \right)}$$$ de deux fonctions $$$f{\left(u \right)} = \ln\left(u\right)$$$ et $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Appliquez la règle de la chaîne $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$La dérivée du logarithme naturel est $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$ :
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Revenir à la variable initiale:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Ainsi, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Dérivez le membre de droite de l’équation.
La dérivée d'une somme/différence est la somme/différence des dérivées :
$${\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)}$$Appliquez la règle du facteur constant $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ avec $$$c = 6$$$ et $$$f{\left(x \right)} = \ln\left(x^{2} + 8\right)$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$La fonction $$$\ln\left(x^{2} + 8\right)$$$ est la composée $$$f{\left(g{\left(x \right)} \right)}$$$ de deux fonctions $$$f{\left(u \right)} = \ln\left(u\right)$$$ et $$$g{\left(x \right)} = x^{2} + 8$$$.
Appliquez la règle de la chaîne $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{2} + 8\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$La dérivée du logarithme naturel est $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$ :
$$- 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{2} + 8\right) + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{2} + 8\right) + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$Revenir à la variable initiale:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(x^{2} + 8\right)}}$$La dérivée d'une somme/différence est la somme/différence des dérivées :
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2} + 8\right)\right)}}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(8\right)\right)}}{x^{2} + 8}$$La dérivée d'une constante est $$$0$$$ :
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(8\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{x^{2} + 8}$$Appliquez la règle de la puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = 2$$$:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(2 x\right)}}{x^{2} + 8}$$Appliquez la règle du facteur constant $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ avec $$$c = 6$$$ et $$$f{\left(x \right)} = \ln\left(x + 1\right)$$$:
$$- \frac{12 x}{x^{2} + 8} + {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)}$$La fonction $$$\ln\left(x + 1\right)$$$ est la composée $$$f{\left(g{\left(x \right)} \right)}$$$ de deux fonctions $$$f{\left(u \right)} = \ln\left(u\right)$$$ et $$$g{\left(x \right)} = x + 1$$$.
Appliquez la règle de la chaîne $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x + 1\right)\right)}$$La dérivée du logarithme naturel est $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$ :
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x + 1\right) = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x + 1\right)$$Revenir à la variable initiale:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(u\right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(x + 1\right)}}$$La dérivée d'une somme/différence est la somme/différence des dérivées :
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x + 1\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(1\right)\right)}}{x + 1}$$La dérivée d'une constante est $$$0$$$ :
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1}$$Appliquez la règle de puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = 1$$$, en d'autres termes, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(1\right)}}{x + 1}$$Ainsi, $$$\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right) = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Ainsi, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Donc, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}\right) H{\left(x \right)} = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}.$$$
Réponse
$$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right) = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}$$$A