Ableitung von $$$\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$
Verwandter Rechner: Ableitungsrechner
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Lösung
Sei $$$H{\left(x \right)} = \frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}$$$.
Logarithmieren Sie beide Seiten: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right)$$$.
Schreibe die rechte Seite mithilfe der Logarithmengesetze um: $$$\ln\left(H{\left(x \right)}\right) = 6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)$$$.
Leite beide Seiten der Gleichung getrennt ab: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)$$$.
Leite die linke Seite der Gleichung ab.
Die Funktion $$$\ln\left(H{\left(x \right)}\right)$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \ln\left(u\right)$$$ und $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Zurück zur ursprünglichen Variable:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Somit gilt $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Leite die rechte Seite der Gleichung ab.
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 6$$$ und $$$f{\left(x \right)} = \ln\left(x^{2} + 8\right)$$$ an:
$$- {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$Die Funktion $$$\ln\left(x^{2} + 8\right)$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \ln\left(u\right)$$$ und $$$g{\left(x \right)} = x^{2} + 8$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$- 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{2} + 8\right)\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{2} + 8\right)\right)} + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$- 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{2} + 8\right) + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) = - 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{2} + 8\right) + \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)$$Zurück zur ursprünglichen Variable:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \frac{d}{dx} \left(x^{2} + 8\right)}{{\color{red}\left(x^{2} + 8\right)}}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2} + 8\right)\right)}}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(8\right)\right)}}{x^{2} + 8}$$Die Ableitung einer Konstante ist $$$0$$$:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(8\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{x^{2} + 8}$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 2$$$ an:
$$\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{x^{2} + 8} = \frac{d}{dx} \left(6 \ln\left(x + 1\right)\right) - \frac{6 {\color{red}\left(2 x\right)}}{x^{2} + 8}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 6$$$ und $$$f{\left(x \right)} = \ln\left(x + 1\right)$$$ an:
$$- \frac{12 x}{x^{2} + 8} + {\color{red}\left(\frac{d}{dx} \left(6 \ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + {\color{red}\left(6 \frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)}$$Die Funktion $$$\ln\left(x + 1\right)$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \ln\left(u\right)$$$ und $$$g{\left(x \right)} = x + 1$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x + 1\right)\right)\right)} = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x + 1\right)\right)}$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$- \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x + 1\right) = - \frac{12 x}{x^{2} + 8} + 6 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x + 1\right)$$Zurück zur ursprünglichen Variable:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(u\right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6 \frac{d}{dx} \left(x + 1\right)}{{\color{red}\left(x + 1\right)}}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x + 1\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(1\right)\right)}}{x + 1}$$Die Ableitung einer Konstante ist $$$0$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)\right)}{x + 1}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{x + 1} = - \frac{12 x}{x^{2} + 8} + \frac{6 {\color{red}\left(1\right)}}{x + 1}$$Somit gilt $$$\frac{d}{dx} \left(6 \ln\left(x + 1\right) - 6 \ln\left(x^{2} + 8\right)\right) = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Somit gilt $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}$$$.
Daher $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \frac{12 x}{x^{2} + 8} + \frac{6}{x + 1}\right) H{\left(x \right)} = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}.$$$
Antwort
$$$\frac{d}{dx} \left(\frac{\left(x + 1\right)^{6}}{\left(x^{2} + 8\right)^{6}}\right) = - \frac{6 \left(x - 2\right) \left(x + 1\right)^{5} \left(x + 4\right)}{\left(x^{2} + 8\right)^{7}}$$$A