$$$\left\langle - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, 0\right\rangle$$$的模

此計算器將求出向量$$$\left\langle - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, 0\right\rangle$$$的模(長度、範數),並顯示步驟。
$$$\langle$$$ $$$\rangle$$$
以逗號分隔。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\mathbf{\vec{u}} = \left\langle - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, 0\right\rangle$$$的模(長度)。

解答

向量的模由公式 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ 給出。

各座標的絕對值平方和為 $$$\left|{- \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}}\right|^{2} + \left|{\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}}\right|^{2} + \left|{0}\right|^{2} = \frac{2 \sin^{2}{\left(t + \frac{\pi}{4} \right)}}{3} + \frac{2 \cos^{2}{\left(t + \frac{\pi}{4} \right)}}{3}$$$

因此,向量的大小為 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{2 \sin^{2}{\left(t + \frac{\pi}{4} \right)}}{3} + \frac{2 \cos^{2}{\left(t + \frac{\pi}{4} \right)}}{3}} = \frac{\sqrt{6}}{3}$$$

答案

大小為 $$$\frac{\sqrt{6}}{3}\approx 0.816496580927726$$$A


Please try a new game Rotatly