$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$

對於尺寸為 $$$2$$$x$$$2$$$ 的方陣 $$$\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]$$$,計算器將求其矩陣指數 $$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$,並顯示步驟。

相關計算器: 矩陣冪計算器

A

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$

解答

首先,將矩陣對角化(步驟請參見 matrix diagonalization calculator)。

由於該矩陣不可對角化,將其寫成對角矩陣 $$$D = \left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]$$$ 與冪零矩陣 $$$N = \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]$$$ 之和。

注意到$$$N^{2} = \left[\begin{array}{cc}0 & 0\\0 & 0\end{array}\right]$$$

這意味著 $$$e^{N} = I + N$$$,即 $$$e^{\left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right] + \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right] = \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right]$$$

對角矩陣的矩陣指數是將其對角元素分別取指數所得的矩陣:$$$e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]} = \left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]$$$

現在,$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]} = e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right] + \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]}\cdot e^{\left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = \left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]\cdot \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right]$$$

最後,將矩陣相乘:

$$$\left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]\cdot \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right] = \left[\begin{array}{cc}e^{t} & - t e^{t}\\0 & e^{t}\end{array}\right]$$$(步驟請參見 矩陣乘法計算器)。

答案

$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]} = \left[\begin{array}{cc}e^{t} & - t e^{t}\\0 & e^{t}\end{array}\right]$$$A


Please try a new game Rotatly