$$$\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}$$$$$$\sigma_{1}$$$ 的積分

此計算器會求出 $$$\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}$$$$$$\sigma_{1}$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}\, d\sigma_{1}$$$

解答

套用常數倍法則 $$$\int c f{\left(\sigma_{1} \right)}\, d\sigma_{1} = c \int f{\left(\sigma_{1} \right)}\, d\sigma_{1}$$$,使用 $$$c=\frac{\sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}$$$$$$f{\left(\sigma_{1} \right)} = \sigma_{1}^{2}$$$

$${\color{red}{\int{\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}} d \sigma_{1}}}} = {\color{red}{\frac{\sigma_{2}^{2} \sigma_{3} \int{\sigma_{1}^{2} d \sigma_{1}}}{\sigma_{4}}}}$$

套用冪次法則 $$$\int \sigma_{1}^{n}\, d\sigma_{1} = \frac{\sigma_{1}^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\frac{\sigma_{2}^{2} \sigma_{3} {\color{red}{\int{\sigma_{1}^{2} d \sigma_{1}}}}}{\sigma_{4}}=\frac{\sigma_{2}^{2} \sigma_{3} {\color{red}{\frac{\sigma_{1}^{1 + 2}}{1 + 2}}}}{\sigma_{4}}=\frac{\sigma_{2}^{2} \sigma_{3} {\color{red}{\left(\frac{\sigma_{1}^{3}}{3}\right)}}}{\sigma_{4}}$$

因此,

$$\int{\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}} d \sigma_{1}} = \frac{\sigma_{1}^{3} \sigma_{2}^{2} \sigma_{3}}{3 \sigma_{4}}$$

加上積分常數:

$$\int{\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}} d \sigma_{1}} = \frac{\sigma_{1}^{3} \sigma_{2}^{2} \sigma_{3}}{3 \sigma_{4}}+C$$

答案

$$$\int \frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}\, d\sigma_{1} = \frac{\sigma_{1}^{3} \sigma_{2}^{2} \sigma_{3}}{3 \sigma_{4}} + C$$$A


Please try a new game Rotatly