$$$\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}$$$$$$\sigma_{1}$$$ に関する積分

この計算機は、$$$\sigma_{1}$$$ に関して $$$\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}\, d\sigma_{1}$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(\sigma_{1} \right)}\, d\sigma_{1} = c \int f{\left(\sigma_{1} \right)}\, d\sigma_{1}$$$ を、$$$c=\frac{\sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}$$$$$$f{\left(\sigma_{1} \right)} = \sigma_{1}^{2}$$$ に対して適用する:

$${\color{red}{\int{\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}} d \sigma_{1}}}} = {\color{red}{\frac{\sigma_{2}^{2} \sigma_{3} \int{\sigma_{1}^{2} d \sigma_{1}}}{\sigma_{4}}}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int \sigma_{1}^{n}\, d\sigma_{1} = \frac{\sigma_{1}^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{\sigma_{2}^{2} \sigma_{3} {\color{red}{\int{\sigma_{1}^{2} d \sigma_{1}}}}}{\sigma_{4}}=\frac{\sigma_{2}^{2} \sigma_{3} {\color{red}{\frac{\sigma_{1}^{1 + 2}}{1 + 2}}}}{\sigma_{4}}=\frac{\sigma_{2}^{2} \sigma_{3} {\color{red}{\left(\frac{\sigma_{1}^{3}}{3}\right)}}}{\sigma_{4}}$$

したがって、

$$\int{\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}} d \sigma_{1}} = \frac{\sigma_{1}^{3} \sigma_{2}^{2} \sigma_{3}}{3 \sigma_{4}}$$

積分定数を加える:

$$\int{\frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}} d \sigma_{1}} = \frac{\sigma_{1}^{3} \sigma_{2}^{2} \sigma_{3}}{3 \sigma_{4}}+C$$

解答

$$$\int \frac{\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}}{\sigma_{4}}\, d\sigma_{1} = \frac{\sigma_{1}^{3} \sigma_{2}^{2} \sigma_{3}}{3 \sigma_{4}} + C$$$A


Please try a new game Rotatly