$$$\frac{3}{x^{6}}$$$ 的積分
您的輸入
求$$$\int \frac{3}{x^{6}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=3$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{6}}$$$:
$${\color{red}{\int{\frac{3}{x^{6}} d x}}} = {\color{red}{\left(3 \int{\frac{1}{x^{6}} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-6$$$:
$$3 {\color{red}{\int{\frac{1}{x^{6}} d x}}}=3 {\color{red}{\int{x^{-6} d x}}}=3 {\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}=3 {\color{red}{\left(- \frac{x^{-5}}{5}\right)}}=3 {\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}$$
因此,
$$\int{\frac{3}{x^{6}} d x} = - \frac{3}{5 x^{5}}$$
加上積分常數:
$$\int{\frac{3}{x^{6}} d x} = - \frac{3}{5 x^{5}}+C$$
答案
$$$\int \frac{3}{x^{6}}\, dx = - \frac{3}{5 x^{5}} + C$$$A