$$$\frac{1}{\left(y - 1\right)^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\left(y - 1\right)^{2}}\, dy$$$。
解答
令 $$$u=y - 1$$$。
則 $$$du=\left(y - 1\right)^{\prime }dy = 1 dy$$$ (步驟見»),並可得 $$$dy = du$$$。
因此,
$${\color{red}{\int{\frac{1}{\left(y - 1\right)^{2}} d y}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
回顧一下 $$$u=y - 1$$$:
$$- {\color{red}{u}}^{-1} = - {\color{red}{\left(y - 1\right)}}^{-1}$$
因此,
$$\int{\frac{1}{\left(y - 1\right)^{2}} d y} = - \frac{1}{y - 1}$$
加上積分常數:
$$\int{\frac{1}{\left(y - 1\right)^{2}} d y} = - \frac{1}{y - 1}+C$$
答案
$$$\int \frac{1}{\left(y - 1\right)^{2}}\, dy = - \frac{1}{y - 1} + C$$$A