$$$y^{4}$$$ 的積分
您的輸入
求$$$\int y^{4}\, dy$$$。
解答
套用冪次法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$:
$${\color{red}{\int{y^{4} d y}}}={\color{red}{\frac{y^{1 + 4}}{1 + 4}}}={\color{red}{\left(\frac{y^{5}}{5}\right)}}$$
因此,
$$\int{y^{4} d y} = \frac{y^{5}}{5}$$
加上積分常數:
$$\int{y^{4} d y} = \frac{y^{5}}{5}+C$$
答案
$$$\int y^{4}\, dy = \frac{y^{5}}{5} + C$$$A
Please try a new game Rotatly