Integral of $$$y^{4}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int y^{4}\, dy$$$.
Solution
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:
$${\color{red}{\int{y^{4} d y}}}={\color{red}{\frac{y^{1 + 4}}{1 + 4}}}={\color{red}{\left(\frac{y^{5}}{5}\right)}}$$
Therefore,
$$\int{y^{4} d y} = \frac{y^{5}}{5}$$
Add the constant of integration:
$$\int{y^{4} d y} = \frac{y^{5}}{5}+C$$
Answer
$$$\int y^{4}\, dy = \frac{y^{5}}{5} + C$$$A
Please try a new game Rotatly