$$$e^{2 x} \sin{\left(x \right)}$$$ 的積分

此計算器將求出 $$$e^{2 x} \sin{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int e^{2 x} \sin{\left(x \right)}\, dx$$$

解答

對於積分 $$$\int{e^{2 x} \sin{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\sin{\left(x \right)}$$$$$$\operatorname{dv}=e^{2 x} dx$$$

$$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{2 x} d x}=\frac{e^{2 x}}{2}$$$(步驟見 »)。

所以,

$${\color{red}{\int{e^{2 x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{2 x}}{2}-\int{\frac{e^{2 x}}{2} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{2 x} \sin{\left(x \right)}}{2} - \int{\frac{e^{2 x} \cos{\left(x \right)}}{2} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = e^{2 x} \cos{\left(x \right)}$$$

$$\frac{e^{2 x} \sin{\left(x \right)}}{2} - {\color{red}{\int{\frac{e^{2 x} \cos{\left(x \right)}}{2} d x}}} = \frac{e^{2 x} \sin{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{e^{2 x} \cos{\left(x \right)} d x}}{2}\right)}}$$

對於積分 $$$\int{e^{2 x} \cos{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\cos{\left(x \right)}$$$$$$\operatorname{dv}=e^{2 x} dx$$$

$$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{2 x} d x}=\frac{e^{2 x}}{2}$$$(步驟見 »)。

該積分可改寫為

$$\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{{\color{red}{\int{e^{2 x} \cos{\left(x \right)} d x}}}}{2}=\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{{\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{2 x}}{2}-\int{\frac{e^{2 x}}{2} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}{2}=\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{e^{2 x} \cos{\left(x \right)}}{2} - \int{\left(- \frac{e^{2 x} \sin{\left(x \right)}}{2}\right)d x}\right)}}}{2}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(x \right)} = e^{2 x} \sin{\left(x \right)}$$$

$$\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{e^{2 x} \cos{\left(x \right)}}{4} + \frac{{\color{red}{\int{\left(- \frac{e^{2 x} \sin{\left(x \right)}}{2}\right)d x}}}}{2} = \frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{e^{2 x} \cos{\left(x \right)}}{4} + \frac{{\color{red}{\left(- \frac{\int{e^{2 x} \sin{\left(x \right)} d x}}{2}\right)}}}{2}$$

我們得到了先前見過的一個積分。

因此,我們得到關於該積分的如下簡單等式:

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{e^{2 x} \cos{\left(x \right)}}{4} - \frac{\int{e^{2 x} \sin{\left(x \right)} d x}}{4}$$

求解後,可得

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5}$$

因此,

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5}$$

加上積分常數:

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5}+C$$

答案

$$$\int e^{2 x} \sin{\left(x \right)}\, dx = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5} + C$$$A


Please try a new game Rotatly