$$$e^{2 x} \sin{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$e^{2 x} \sin{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int e^{2 x} \sin{\left(x \right)}\, dx$$$.

Çözüm

$$$\int{e^{2 x} \sin{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\sin{\left(x \right)}$$$ ve $$$\operatorname{dv}=e^{2 x} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{2 x} d x}=\frac{e^{2 x}}{2}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$${\color{red}{\int{e^{2 x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{2 x}}{2}-\int{\frac{e^{2 x}}{2} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{2 x} \sin{\left(x \right)}}{2} - \int{\frac{e^{2 x} \cos{\left(x \right)}}{2} d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = e^{2 x} \cos{\left(x \right)}$$$ ile uygula:

$$\frac{e^{2 x} \sin{\left(x \right)}}{2} - {\color{red}{\int{\frac{e^{2 x} \cos{\left(x \right)}}{2} d x}}} = \frac{e^{2 x} \sin{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{e^{2 x} \cos{\left(x \right)} d x}}{2}\right)}}$$

$$$\int{e^{2 x} \cos{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\cos{\left(x \right)}$$$ ve $$$\operatorname{dv}=e^{2 x} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{2 x} d x}=\frac{e^{2 x}}{2}$$$ (adımlar için bkz. »).

O halde,

$$\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{{\color{red}{\int{e^{2 x} \cos{\left(x \right)} d x}}}}{2}=\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{{\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{2 x}}{2}-\int{\frac{e^{2 x}}{2} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}{2}=\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{e^{2 x} \cos{\left(x \right)}}{2} - \int{\left(- \frac{e^{2 x} \sin{\left(x \right)}}{2}\right)d x}\right)}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- \frac{1}{2}$$$ ve $$$f{\left(x \right)} = e^{2 x} \sin{\left(x \right)}$$$ ile uygula:

$$\frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{e^{2 x} \cos{\left(x \right)}}{4} + \frac{{\color{red}{\int{\left(- \frac{e^{2 x} \sin{\left(x \right)}}{2}\right)d x}}}}{2} = \frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{e^{2 x} \cos{\left(x \right)}}{4} + \frac{{\color{red}{\left(- \frac{\int{e^{2 x} \sin{\left(x \right)} d x}}{2}\right)}}}{2}$$

Daha önce gördüğümüz bir integrale ulaştık.

Böylece, integrale ilişkin aşağıdaki basit denklemi elde ettik:

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{e^{2 x} \sin{\left(x \right)}}{2} - \frac{e^{2 x} \cos{\left(x \right)}}{4} - \frac{\int{e^{2 x} \sin{\left(x \right)} d x}}{4}$$

Çözdüğümüzde, şunu elde ederiz

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5}$$

Dolayısıyla,

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5}$$

İntegrasyon sabitini ekleyin:

$$\int{e^{2 x} \sin{\left(x \right)} d x} = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5}+C$$

Cevap

$$$\int e^{2 x} \sin{\left(x \right)}\, dx = \frac{\left(2 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{2 x}}{5} + C$$$A


Please try a new game Rotatly