$$$\frac{f^{2} x^{2}}{a^{2}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{f^{2} x^{2}}{a^{2}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{f^{2}}{a^{2}}$$$ 與 $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}{\int{\frac{f^{2} x^{2}}{a^{2}} d x}}} = {\color{red}{\frac{f^{2} \int{x^{2} d x}}{a^{2}}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$\frac{f^{2} {\color{red}{\int{x^{2} d x}}}}{a^{2}}=\frac{f^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{a^{2}}=\frac{f^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{a^{2}}$$
因此,
$$\int{\frac{f^{2} x^{2}}{a^{2}} d x} = \frac{f^{2} x^{3}}{3 a^{2}}$$
加上積分常數:
$$\int{\frac{f^{2} x^{2}}{a^{2}} d x} = \frac{f^{2} x^{3}}{3 a^{2}}+C$$
答案
$$$\int \frac{f^{2} x^{2}}{a^{2}}\, dx = \frac{f^{2} x^{3}}{3 a^{2}} + C$$$A