$$$x$$$ değişkenine göre $$$\frac{f^{2} x^{2}}{a^{2}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{f^{2} x^{2}}{a^{2}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{f^{2} x^{2}}{a^{2}}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{f^{2}}{a^{2}}$$$ ve $$$f{\left(x \right)} = x^{2}$$$ ile uygula:

$${\color{red}{\int{\frac{f^{2} x^{2}}{a^{2}} d x}}} = {\color{red}{\frac{f^{2} \int{x^{2} d x}}{a^{2}}}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$\frac{f^{2} {\color{red}{\int{x^{2} d x}}}}{a^{2}}=\frac{f^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{a^{2}}=\frac{f^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{a^{2}}$$

Dolayısıyla,

$$\int{\frac{f^{2} x^{2}}{a^{2}} d x} = \frac{f^{2} x^{3}}{3 a^{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{f^{2} x^{2}}{a^{2}} d x} = \frac{f^{2} x^{3}}{3 a^{2}}+C$$

Cevap

$$$\int \frac{f^{2} x^{2}}{a^{2}}\, dx = \frac{f^{2} x^{3}}{3 a^{2}} + C$$$A


Please try a new game Rotatly