$$$- \alpha \beta - x + \frac{1}{x}$$$$$$x$$$ 的積分

此計算器會求出 $$$- \alpha \beta - x + \frac{1}{x}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \alpha \beta - x + \frac{1}{x}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- \alpha \beta - x + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} - \int{x d x} - \int{\alpha \beta d x}\right)}}$$

$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$

$$- \int{x d x} - \int{\alpha \beta d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{x d x} - \int{\alpha \beta d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\ln{\left(\left|{x}\right| \right)} - \int{\alpha \beta d x} - {\color{red}{\int{x d x}}}=\ln{\left(\left|{x}\right| \right)} - \int{\alpha \beta d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\ln{\left(\left|{x}\right| \right)} - \int{\alpha \beta d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

配合 $$$c=\alpha \beta$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$- \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\alpha \beta d x}}} = - \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)} - {\color{red}{\alpha \beta x}}$$

因此,

$$\int{\left(- \alpha \beta - x + \frac{1}{x}\right)d x} = - \alpha \beta x - \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)}$$

加上積分常數:

$$\int{\left(- \alpha \beta - x + \frac{1}{x}\right)d x} = - \alpha \beta x - \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)}+C$$

答案

$$$\int \left(- \alpha \beta - x + \frac{1}{x}\right)\, dx = \left(- \alpha \beta x - \frac{x^{2}}{2} + \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly