Ολοκλήρωμα της $$$- \alpha \beta - x + \frac{1}{x}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- \alpha \beta - x + \frac{1}{x}\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(- \alpha \beta - x + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} - \int{x d x} - \int{\alpha \beta d x}\right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{x}$$$ είναι $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{x d x} - \int{\alpha \beta d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{x d x} - \int{\alpha \beta d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:
$$\ln{\left(\left|{x}\right| \right)} - \int{\alpha \beta d x} - {\color{red}{\int{x d x}}}=\ln{\left(\left|{x}\right| \right)} - \int{\alpha \beta d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\ln{\left(\left|{x}\right| \right)} - \int{\alpha \beta d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=\alpha \beta$$$:
$$- \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\alpha \beta d x}}} = - \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)} - {\color{red}{\alpha \beta x}}$$
Επομένως,
$$\int{\left(- \alpha \beta - x + \frac{1}{x}\right)d x} = - \alpha \beta x - \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- \alpha \beta - x + \frac{1}{x}\right)d x} = - \alpha \beta x - \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)}+C$$
Απάντηση
$$$\int \left(- \alpha \beta - x + \frac{1}{x}\right)\, dx = \left(- \alpha \beta x - \frac{x^{2}}{2} + \ln\left(\left|{x}\right|\right)\right) + C$$$A