$$$\csc^{2}{\left(x \right)} - 1$$$ 的積分
您的輸入
求$$$\int \left(\csc^{2}{\left(x \right)} - 1\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\csc^{2}{\left(x \right)} d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\int{\csc^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\csc^{2}{\left(x \right)} d x} - {\color{red}{x}}$$
$$$\csc^{2}{\left(x \right)}$$$ 的積分是 $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
因此,
$$\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)}$$
加上積分常數:
$$\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)}+C$$
答案
$$$\int \left(\csc^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A