Integral of $$$\csc^{2}{\left(x \right)} - 1$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(\csc^{2}{\left(x \right)} - 1\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\csc^{2}{\left(x \right)} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{\csc^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\csc^{2}{\left(x \right)} d x} - {\color{red}{x}}$$
The integral of $$$\csc^{2}{\left(x \right)}$$$ is $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
Therefore,
$$\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)}$$
Add the constant of integration:
$$\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)}+C$$
Answer
$$$\int \left(\csc^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A