Integral of $$$\csc^{2}{\left(x \right)} - 1$$$

The calculator will find the integral/antiderivative of $$$\csc^{2}{\left(x \right)} - 1$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\csc^{2}{\left(x \right)} - 1\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\csc^{2}{\left(x \right)} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$\int{\csc^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\csc^{2}{\left(x \right)} d x} - {\color{red}{x}}$$

The integral of $$$\csc^{2}{\left(x \right)}$$$ is $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:

$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$

Therefore,

$$\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)}$$

Add the constant of integration:

$$\int{\left(\csc^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)}+C$$

Answer

$$$\int \left(\csc^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly