$$$\sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)}$$$ 的積分

此計算器將求出 $$$\sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)}\, dx$$$

解答

$$$u=\sin{\left(\frac{\pi x}{3} \right)}$$$

$$$du=\left(\sin{\left(\frac{\pi x}{3} \right)}\right)^{\prime }dx = \frac{\pi \cos{\left(\frac{\pi x}{3} \right)}}{3} dx$$$ (步驟見»),並可得 $$$\cos{\left(\frac{\pi x}{3} \right)} dx = \frac{3 du}{\pi}$$$

該積分變為

$${\color{red}{\int{\sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)} d x}}} = {\color{red}{\int{\frac{3 u}{\pi} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{3}{\pi}$$$$$$f{\left(u \right)} = u$$$

$${\color{red}{\int{\frac{3 u}{\pi} d u}}} = {\color{red}{\left(\frac{3 \int{u d u}}{\pi}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\frac{3 {\color{red}{\int{u d u}}}}{\pi}=\frac{3 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{\pi}=\frac{3 {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{\pi}$$

回顧一下 $$$u=\sin{\left(\frac{\pi x}{3} \right)}$$$

$$\frac{3 {\color{red}{u}}^{2}}{2 \pi} = \frac{3 {\color{red}{\sin{\left(\frac{\pi x}{3} \right)}}}^{2}}{2 \pi}$$

因此,

$$\int{\sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)} d x} = \frac{3 \sin^{2}{\left(\frac{\pi x}{3} \right)}}{2 \pi}$$

加上積分常數:

$$\int{\sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)} d x} = \frac{3 \sin^{2}{\left(\frac{\pi x}{3} \right)}}{2 \pi}+C$$

答案

$$$\int \sin{\left(\frac{\pi x}{3} \right)} \cos{\left(\frac{\pi x}{3} \right)}\, dx = \frac{3 \sin^{2}{\left(\frac{\pi x}{3} \right)}}{2 \pi} + C$$$A


Please try a new game Rotatly