$$$- x^{2} + 4 \cos{\left(2 x \right)}$$$ 的積分

此計算器將求出 $$$- x^{2} + 4 \cos{\left(2 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- x^{2} + 4 \cos{\left(2 x \right)}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- x^{2} + 4 \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} + \int{4 \cos{\left(2 x \right)} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\int{4 \cos{\left(2 x \right)} d x} - {\color{red}{\int{x^{2} d x}}}=\int{4 \cos{\left(2 x \right)} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{4 \cos{\left(2 x \right)} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$

$$- \frac{x^{3}}{3} + {\color{red}{\int{4 \cos{\left(2 x \right)} d x}}} = - \frac{x^{3}}{3} + {\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

所以,

$$- \frac{x^{3}}{3} + 4 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = - \frac{x^{3}}{3} + 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$- \frac{x^{3}}{3} + 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = - \frac{x^{3}}{3} + 4 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$- \frac{x^{3}}{3} + 2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - \frac{x^{3}}{3} + 2 {\color{red}{\sin{\left(u \right)}}}$$

回顧一下 $$$u=2 x$$$

$$- \frac{x^{3}}{3} + 2 \sin{\left({\color{red}{u}} \right)} = - \frac{x^{3}}{3} + 2 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$

因此,

$$\int{\left(- x^{2} + 4 \cos{\left(2 x \right)}\right)d x} = - \frac{x^{3}}{3} + 2 \sin{\left(2 x \right)}$$

加上積分常數:

$$\int{\left(- x^{2} + 4 \cos{\left(2 x \right)}\right)d x} = - \frac{x^{3}}{3} + 2 \sin{\left(2 x \right)}+C$$

答案

$$$\int \left(- x^{2} + 4 \cos{\left(2 x \right)}\right)\, dx = \left(- \frac{x^{3}}{3} + 2 \sin{\left(2 x \right)}\right) + C$$$A


Please try a new game Rotatly