$$$- x^{2} + 4 \cos{\left(2 x \right)}$$$ 的积分

该计算器将求出$$$- x^{2} + 4 \cos{\left(2 x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- x^{2} + 4 \cos{\left(2 x \right)}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(- x^{2} + 4 \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} + \int{4 \cos{\left(2 x \right)} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$\int{4 \cos{\left(2 x \right)} d x} - {\color{red}{\int{x^{2} d x}}}=\int{4 \cos{\left(2 x \right)} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{4 \cos{\left(2 x \right)} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

$$$c=4$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{x^{3}}{3} + {\color{red}{\int{4 \cos{\left(2 x \right)} d x}}} = - \frac{x^{3}}{3} + {\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

因此,

$$- \frac{x^{3}}{3} + 4 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = - \frac{x^{3}}{3} + 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{x^{3}}{3} + 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = - \frac{x^{3}}{3} + 4 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$- \frac{x^{3}}{3} + 2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - \frac{x^{3}}{3} + 2 {\color{red}{\sin{\left(u \right)}}}$$

回忆一下 $$$u=2 x$$$:

$$- \frac{x^{3}}{3} + 2 \sin{\left({\color{red}{u}} \right)} = - \frac{x^{3}}{3} + 2 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$

因此,

$$\int{\left(- x^{2} + 4 \cos{\left(2 x \right)}\right)d x} = - \frac{x^{3}}{3} + 2 \sin{\left(2 x \right)}$$

加上积分常数:

$$\int{\left(- x^{2} + 4 \cos{\left(2 x \right)}\right)d x} = - \frac{x^{3}}{3} + 2 \sin{\left(2 x \right)}+C$$

答案

$$$\int \left(- x^{2} + 4 \cos{\left(2 x \right)}\right)\, dx = \left(- \frac{x^{3}}{3} + 2 \sin{\left(2 x \right)}\right) + C$$$A


Please try a new game Rotatly