$$$1 - \cos{\left(2 x \right)}$$$ 的積分
您的輸入
求$$$\int \left(1 - \cos{\left(2 x \right)}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\cos{\left(2 x \right)} d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{\cos{\left(2 x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\cos{\left(2 x \right)} d x} + {\color{red}{x}}$$
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
該積分變為
$$x - {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = x - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$x - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = x - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$x - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = x - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
回顧一下 $$$u=2 x$$$:
$$x - \frac{\sin{\left({\color{red}{u}} \right)}}{2} = x - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
因此,
$$\int{\left(1 - \cos{\left(2 x \right)}\right)d x} = x - \frac{\sin{\left(2 x \right)}}{2}$$
加上積分常數:
$$\int{\left(1 - \cos{\left(2 x \right)}\right)d x} = x - \frac{\sin{\left(2 x \right)}}{2}+C$$
答案
$$$\int \left(1 - \cos{\left(2 x \right)}\right)\, dx = \left(x - \frac{\sin{\left(2 x \right)}}{2}\right) + C$$$A