$$$\frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}}\, dx$$$。
解答
令 $$$u=\operatorname{asin}{\left(x \right)}$$$。
則 $$$du=\left(\operatorname{asin}{\left(x \right)}\right)^{\prime }dx = \frac{dx}{\sqrt{1 - x^{2}}}$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{1 - x^{2}}} = du$$$。
該積分可改寫為
$${\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=\operatorname{asin}{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\operatorname{asin}{\left(x \right)}}}}\right| \right)}$$
因此,
$$\int{\frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}} d x} = \ln{\left(\left|{\operatorname{asin}{\left(x \right)}}\right| \right)}$$
加上積分常數:
$$\int{\frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}} d x} = \ln{\left(\left|{\operatorname{asin}{\left(x \right)}}\right| \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}}\, dx = \ln\left(\left|{\operatorname{asin}{\left(x \right)}}\right|\right) + C$$$A