$$$\frac{1}{a^{2} u^{2}}$$$ 對 $$$u$$$ 的積分
您的輸入
求$$$\int \frac{1}{a^{2} u^{2}}\, du$$$。
解答
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{a^{2}}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$${\color{red}{\int{\frac{1}{a^{2} u^{2}} d u}}} = {\color{red}{\frac{\int{\frac{1}{u^{2}} d u}}{a^{2}}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{a^{2}}=\frac{{\color{red}{\int{u^{-2} d u}}}}{a^{2}}=\frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- u^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{a^{2}}$$
因此,
$$\int{\frac{1}{a^{2} u^{2}} d u} = - \frac{1}{a^{2} u}$$
加上積分常數:
$$\int{\frac{1}{a^{2} u^{2}} d u} = - \frac{1}{a^{2} u}+C$$
答案
$$$\int \frac{1}{a^{2} u^{2}}\, du = - \frac{1}{a^{2} u} + C$$$A