$$$\frac{1}{a^{2} u^{2}}$$$ 关于$$$u$$$的积分
您的输入
求$$$\int \frac{1}{a^{2} u^{2}}\, du$$$。
解答
对 $$$c=\frac{1}{a^{2}}$$$ 和 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{1}{a^{2} u^{2}} d u}}} = {\color{red}{\frac{\int{\frac{1}{u^{2}} d u}}{a^{2}}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{a^{2}}=\frac{{\color{red}{\int{u^{-2} d u}}}}{a^{2}}=\frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- u^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{a^{2}}$$
因此,
$$\int{\frac{1}{a^{2} u^{2}} d u} = - \frac{1}{a^{2} u}$$
加上积分常数:
$$\int{\frac{1}{a^{2} u^{2}} d u} = - \frac{1}{a^{2} u}+C$$
答案
$$$\int \frac{1}{a^{2} u^{2}}\, du = - \frac{1}{a^{2} u} + C$$$A