$$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}$$$ 對 $$$x$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{i a g h o r^{3} t w}{2 e}$$$ 與 $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$:
$${\color{red}{\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x}}} = {\color{red}{\left(\frac{i a g h o r^{3} t w \int{\ln{\left(x \right)}^{2} d x}}{2 e}\right)}}$$
對於積分 $$$\int{\ln{\left(x \right)}^{2} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
該積分可改寫為
$$\frac{i a g h o r^{3} t w {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}}{2 e}=\frac{i a g h o r^{3} t w {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}}{2 e}=\frac{i a g h o r^{3} t w {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}}{2 e}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\int{2 \ln{\left(x \right)} d x}}}\right)}{2 e} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}\right)}{2 e}$$
對於積分 $$$\int{\ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(x \right)}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
因此,
$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}\right)}{2 e}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}\right)}{2 e}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}\right)}{2 e}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{\int{1 d x}}}\right)}{2 e} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{x}}\right)}{2 e}$$
因此,
$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 x\right)}{2 e}$$
化簡:
$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{2 e}$$
加上積分常數:
$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{2 e}+C$$
答案
$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}\, dx = \frac{i a g h o r^{3} t w x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right)}{2 e} + C$$$A