Integral of $$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{i a g h o r^{3} t w}{2 e}$$$ and $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$:

$${\color{red}{\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x}}} = {\color{red}{\left(\frac{i a g h o r^{3} t w \int{\ln{\left(x \right)}^{2} d x}}{2 e}\right)}}$$

For the integral $$$\int{\ln{\left(x \right)}^{2} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ and $$$\operatorname{dv}=dx$$$.

Then $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).

The integral becomes

$$\frac{i a g h o r^{3} t w {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}}{2 e}=\frac{i a g h o r^{3} t w {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}}{2 e}=\frac{i a g h o r^{3} t w {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}}{2 e}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\int{2 \ln{\left(x \right)} d x}}}\right)}{2 e} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}\right)}{2 e}$$

For the integral $$$\int{\ln{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\ln{\left(x \right)}$$$ and $$$\operatorname{dv}=dx$$$.

Then $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).

The integral can be rewritten as

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}\right)}{2 e}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}\right)}{2 e}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}\right)}{2 e}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{\int{1 d x}}}\right)}{2 e} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{x}}\right)}{2 e}$$

Therefore,

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 x\right)}{2 e}$$

Simplify:

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{2 e}$$

Add the constant of integration:

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{2 e} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{2 e}+C$$

Answer

$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{2 e}\, dx = \frac{i a g h o r^{3} t w x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right)}{2 e} + C$$$A


Please try a new game Rotatly